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Coordination sequences and information spreading in small-world networks

Carlos P. Herrero
Instituto de Ciencia de Materiales, Consejo Superior de Investigaciones Cientı´ficas (CSIC), Campus de Cantoblanco,

28049 Madrid, Spain
~Received 17 May 2002; published 21 October 2002!

We study the spread of information in small-world networks generated from differentd-dimensional regular
lattices, withd51, 2, and 3. With this purpose, we analyze by numerical simulations the behavior of the
coordination sequence, e.g., the average number of sitesC(n) that can be reached from a given node of the
network in n steps along its bonds. For sufficiently large networks, we find an asymptotic behaviorC(n)
;rn, with a constantr that depends on the network dimensiond and on the rewiring probabilityp ~which
measures the disorder strength of a given network!. A simple model of information spreading in these networks
is studied, assuming that only a fractionq of the network sites are active. The number of active nodes reached
in n steps has an asymptotic formln, l being a constant that depends onp andq, as well as on the dimension
d of the underlying lattice. The information spreading presents two different regimes depending on the value of
l: For l.1 the information propagates along the whole system, and forl,1 the spreading is damped and the
information remains confined in a limited region of the network. We discuss the connection of these results
with site percolation in small-world networks.
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I. INTRODUCTION

It is well known that the structure of communication a
transportation systems plays a crucial role in the sprea
information. Also, the structure of social networks is impo
tant for the dynamics of disease propagation. In last ye
several models of these complex networks have been in
duced motivated by empirical data in different fields@1–3#.
In particular, networks showing the ‘‘small-world’’ effec
have attracted a great deal of attention. In these networks
‘‘distance’’ between any two elements is small as compa
with the system size, and the propagation of information~or
signal, disease, damage, . . . ) takes place much faster than
regular lattices@4–8#.

Small-world networks are well suited to study propert
of physical systems with underlying networks ranging fro
regular lattices to random graphs@9,10#, by changing a single
parameter@11#. Watts and Strogatz@4# have proposed a
model for social networks, which is based on a locally high
connected regular lattice, in which a fractionp of the links
between nearest-neighbor sites are randomly replaced
new random links, thus creating long-range ‘‘shortcuts.’’

In these networks, one has at the same time a local ne
borhood~as for regular lattices! and some global propertie
of random graphs. The small-world effect is usually me
sured by the scaling behavior of the characteristic path len
,, defined as the average of the distance between any
sites. For a random network one has a logarithmic incre
of , with the network sizeN ~number of sites!, while for a
d-dimensional regular lattice one finds an algebraic dep
dence:,;N1/d. In small-world networks, there is a cros
over sizeN* ;p21 that separates the large- and small-wo
regimes@12–14#, and the small-world behavior appears f
any finite value ofp (0,p,1) as soon as the network
large enough.

This shorter global length scale changes strongly the
havior of statistical physical problems on small-world n
1063-651X/2002/66~4!/046126~8!/$20.00 66 0461
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works, as compared with regular lattices. Among these pr
lems, one finds in the literature signal propagation@4#, spread
of infections @15,16#, and random spreading of informatio
@17,18#. Site and bond percolation@16,19,20#, as well as the
ferromagnetic Ising model@21,22#, have been also studied i
these networks.

Up to now, most of the published work on small world
has concentrated on networks obtained from o
dimensional lattices~rings!. Small-world networks built by
rewiring lattices of higher dimensions have being employ
by Newman and Watts@19# to study percolation, as a mode
of disease propagation. Also, damage spreading has
studied for Ising models on small-world networks obtain
from two-dimensional~2D! and three-dimensional~3D! lat-
tices @23#.

In this paper we investigate the spread of information
small-world networks built up from differentd-dimensional
regular lattices~with d51, 2, and 3!, which allows us to
analyze the influence of the dimensionality on the lon
distance characteristics of these networks. With this goal,
study by numerical simulations the asymptotic behavior
the so-called ‘‘coordination sequence,’’ a concept usua
employed to characterize the connectivity of crystal lattic
@24–26#. It gives information about the number of sitesC(n)
that can be reached from a given site in a number of stepn
~in one step one goes from a site to a nearest neighbor!. A
similar quantity has been studied earlier in small-world n
works by means of analytical calculations in a continuu
model@19,27,28#, as it is relevant for the analysis of sprea
ing processes in these networks. From our numerical si
lations, we find for large networks the asymptotic behav
C(n);rn, with a constantr.1 that depends on the rewir
ing probabilityp and on the network dimensiond. Then, we
study a simple model of information spreading, assum
that only a fraction of the network sites are active si
~which receive and propagate the information!. The number
of active sites reached inn steps has an asymptotic form
©2002 The American Physical Society26-1
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CARLOS P. HERRERO PHYSICAL REVIEW E66, 046126 ~2002!
;ln, beingl a constant that depends onp and on the frac-
tion of active sites. We discuss the connection of our res
with site percolation in these networks.

The paper is organized as follows. In Sec. II we descr
the procedure employed to generate the networks stu
here, as well as some of their characteristics. In Sec. III
present results for the coordination sequences, and in Se
we analyze the spread of information in small-world n
works. The paper closes with some conclusions in Sec.

II. SMALL-WORLD MODEL

The networks studied here were generated from reg
lattices of different dimensions: 1D ring with coordinatio
number four, 2D square, and 3D cubic lattices. Small-wo
networks were built up according to the model of Watts a
Strogatz@4,11#. We consider in turn each of the bonds in t
starting lattice and replace it with a given probabilityp by a
new bond. This means that one end of the bond is change
a new node chosen at random from the whole network. O
imposes the conditions that no two nodes can have more
one bond connecting them, and no node can be connecte
a link to itself. This method keeps constant the total num
of links in the rewired networks. Thus the average coordi
tion numberz in the 1D and 2D cases amounts to 4, and
our 3D networksz56. The total number of rewired links i
1
2 zpN on average. In the rewiring process we avoided i
lated sites~with zero links!, and thus each site has at lea
one neighbor. With this procedure we obtained networks
which more than 99.9% of the sites were connected i
single component.~A random graph has usually differen
components of various sizes.! Note that there is a technica
difference between our procedure and that of Watts and S
gatz @4#, in which each site has at leastz/2 neighbors in the
rewired network.

The size of the networks used in our calculations w
larger than the crossover sizeN* @14,19#, so that we were in
the small-world regime. Our largest networks includ
33105 sites for d51, 5003500 sites for d52, and
80380380 for d53. Periodic boundary conditions wer
assumed.

For regular lattices all nodes have the same connectiv
i.e. the same number of nearest neighbors. However, fop
.0 different connectivities are possible, giving rise to
probability distribution that we will callP(m). For a~large!
random network with average coordination numberz, P(m)
is given by a Poisson distribution@2,9#

Prd~m!5
zme2z

m!
. ~1!

For the small-world networks studied here, one can fi
an analytic expression for the probability distribution of co
nectivities,Pan(m). To do this, we will distinguish betwee
the ends of links that remain on their original sites~as in the
regular lattice!, and those changed in the rewiring proce
The number of links in a network with mean coordinationz
amounts to1

2 zN. Since for each link connecting two sites
the starting regular lattice, we change one of these sites
04612
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probabilityp, the average number of changes per site is1
2 zp.

This means that each connection of a site is removed in
rewiring process with probabilityt5p/2. Hence, the prob-
ability distribution of the original~not rewired! links starting
from a site is given by

P1~r !5S z
r D ~12t !r tz2r , ~2!

for r 50, . . . ,z. On the other side, the distribution of th
number of links generated in the rewiring process is, in
limit of large N

P2~s!5
1

s!
~ tz!se2zt, ~3!

for s>0. Finally, the probability distribution for the connec
tivities in small-world networks is given by

Pan~m!5 (
r 50

r max S z
r D ~12t !r tz2r~ tz!m2r

e2tz

~m2r !!
, ~4!

for m>0 andr max5min(z,m). This expression is similar to
that derived by Barrat and Weigt@21# for the networks gen-
erated by these authors.~The main difference is that they lef
untouchedz/2 links per site, as in Ref.@4#.! The probability
distribution Pan(m) for z54 is represented in Fig. 1 by
dashed lines joining points corresponding to differentm.
Each line corresponds to a particular value of the rewir
probability p. Symbols indicate results of numerical simul
tions for small-world networks generated from a 2D squ
lattice: diamonds,p50.001; triangles,p50.01; circles,p
50.1; squares,p51. Note that the simulated networks d

FIG. 1. Probability distribution of the connectivitym for small-
world networks. Symbols are the results of numerical simulatio
for networks generated from a 2D lattice of size 5003500: dia-
monds,p50.001; triangles,p50.01; circles,p50.1; squares,p
51. Dashed lines are guides to the eye, obtained fromPan(m)
values derived by using Eq.~4!. A dotted line shows the probability
distribution Prd(m) for a random network with mean connectivit
z54 @Eq. ~1!#.
6-2
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COORDINATION SEQUENCES AND INFORMATION . . . PHYSICAL REVIEW E66, 046126 ~2002!
not include isolated sites, i.e.,P(0)50. This fact, however,
does not affect a good agreement between simulated
analytical results, sincePan(0) derived from Eq.~4! is small,
and even forp51 we havePan(0),0.01.

As expected, the distributionP(m) becomes broader asp
increases. Forp51, our results~squares! approach the con
nectivity distribution of a random network withz54 ~dotted
line!, which is given by Eq.~1!. Nevertheless, it turns ou
that both probability distributions are clearly different. Th
is due to the fact that our networks withp51 are not random
networks, as they keep memory of the starting regular
tices. The main reason for this memory effect is that
rewire only one end of each link, maintaining the other e
on its original site.

III. COORDINATION SEQUENCES

Coordination sequencesC(n) count the number of node
that can be reached from a given point of the network b
numbern of steps along its bonds.C(n) is thus the number
of nodes in the ‘‘coordination shell’’n. This concept gener
alizes the familiar coordination number~also called connec
tivity, or vertex degree in graph theory!, which is the first
member of this series (n51). For regular lattices, the coor
dination sequenceC(n) is a polynomial. For the lattices con
sidered here one hasC1D(n)54, C2D(n)54n, and
C3D(n)54n212. In general, ford-dimensional lattices,
C(n) is a polynomial of degreed21. On the other side, fo
a ~large! random network with mean coordinationz, the av-
erage coordination sequence is given byCrd(n)5zn ~see the
Appendix!. Note that for random and small-world network
the coordination sequence depends on the considered sta
node of the network. In the sequel we will callC(n) the
average coordination sequence, i.e., the mean value obta
~for eachn) by averaging the coordination sequences of
network sites.

In Fig. 2 we give the average coordination sequen
C(n) for 2D small-world networks of different sizesL3L,
with L from 50 to 500, and for rewiring probabilityp
50.01.C(n) increases with the distancen up to a maximum
value Cmax, which depends on the system size, and th
decreases for largern. For eachL one observes a region i
which logC(n);n, before reaching saturation atCmax. Such
a region becomes larger asL rises, and leads to a
asymptotic dependence of the form:C(n);rn with a con-
stantr.1 ~dashed line in Fig. 2!. This exponential depen
dence onn contrasts with the power law corresponding to t
starting regular lattice.

A similar behavior is found forC(n) in 1D and 3D net-
works, and for different values ofp. This is shown in Fig. 3
for small-world networks built up from lattices of differen
dimensions:~a! d51, ~b! d52, and~c! d53. In all cases
one finds for sufficiently largen the dependenceC(n);rn,
which is similar to the expression corresponding to a rand
network with mean connectivityr ~instead of the actua
mean connectivityz). Hence, we will callr ‘‘effective con-
nectivity’’ of the considered network, which will depend o
the dimensiond and on the rewiring probabilityp. This ef-
fective connectivity controls the long-range properties of
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networks under consideration. By increasingn, one observes
in the 2D and 3D cases a crossover from the regular-lat
behavior~power-law dependence, smalln) to an exponential
dependence~large n). This crossover takes place at a di
tancen0, which increases for decreasingp, and is found to
scale asn0;p21/d, as expected from earlier calculation
@19#. In 1D we do not observe such a crossover, since for
regular lattice one hasC(n)54 ~a constant!, and the expo-
nential dependence appears already for smalln values, even
for p50.001@squares in Fig. 3~a!#.

The mean distance between pairs of sites, in a given
network ~the characteristic path length! is given in our con-
text by the average valuên&, calculated with the normalized
probability distributionC(n)/N. As indicated above, this av
erage distance, is known to increase logarithmically with
the system size. This dependence of, appears naturally from
the asymptotic dependence ofC(n), as for C(n);rn one
has

,;
logN

logr
. ~5!

Here one can see again the role ofr as an effective connec
tivity for small-world networks, since for random network
with mean connectivityz one has,; logN/logz @2#. For p
51 we obtainr values close to~but lower than! the mean
connectivityz, as expected from the fact that in this case
have networks that are not totally random~for which one
should haver5z).

For a given dimensiond, the effective connectivityr de-
creases asp is lowered. In the limitp→0 one hasr→1, as
expected when one approaches a regular lattice. In Fig. 4
present the effective connectivityr as a function ofp in a
double logarithmic plot. One observes thatr21 follows for
smallp a power law of the form:r215a pb, with constants

FIG. 2. Average coordination sequenceC(n) for 2D networks
of different sizesL3L and p50.01. Different symbols represen
several values ofL: squares,L550; circles,L5100; triangles,L
5200; diamonds,L5500. The dashed line is an extrapolation f
largeL. Dotted lines are guides to the eye.
6-3
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CARLOS P. HERRERO PHYSICAL REVIEW E66, 046126 ~2002!
FIG. 3. Average coordination sequenceC(n) for networks of
different dimensiond, and for several values of the rewiring prob
ability p. ~a! 1D networks with 105 sites; from top to bottom,p
51, 0.1, 0.05, 0.02, 0.01, 0.005, 0.001, and 0.~b! 2D networks of
size 5003500, withp51, 0.1, 0.01, 0.004, 0.002, 0.001, and 0.~c!
3D networks of size 80380380, with p51, 0.05, 0.005, 0.001
and 0. Dashed lines are guides to the eye.
04612
a andb dependent on the network dimension. By numeri
fitting, we find for the exponentb the values 0.98~2!, 0.49~2!,
and 0.36~2!, in 1D, 2D, and 3D, respectively.

To understand this dependence onp of the effective con-
nectivity, we will consider the length scale characteristic
small-world networks, given by the typical distance betwe
ends of shortcuts@19#:

j5~pz!21/d. ~6!

First, we note that for regular lattices, one hasC(n
11)/C(n)→1 for largen. Second, in the presence of a lo
concentration of shortcuts one expects@19,27#

C~n11!'C~n!@11B/j#, ~7!

B being a constant dependent on the network topolo
Therefore, for smallp we find forr a dependence in the form

r511ap1/d, ~8!

in good agreement with the results of our numerical simu
tions. In particular, we find for the exponentb defined above:
b51/d. Our numerical result for 3D networks is slightl
higher than 1/d50.33, which seems to indicate that st
smallerp values~larger network sizes! are necessary to im
prove the agreement with this prediction.

In Fig. 4 we compare these numerical results for the
fective connectivityr with those obtained from analytic ca
culations in a continuum model~dotted lines! @19,27,28#.
These calculations allowed to obtain analytic expressions
the ‘‘volume’’ V(r ), which gives the average number o
neighbors of a given node in a neighborhood of ‘‘radius’’r.
In particular, ourC(n) should coincide withA(r ) ~the ‘‘sur-
face area’’!, defined as the derivativeA(r )5dV(r )/dr in

FIG. 4. Effective connectivityr for small-world networks gen-
erated from differentd-dimensional lattices. We presentr21 vs the
rewiring probabilityp in a double-logarithmic plot for 1D~squares!,
2D ~circles!, and 3D~triangles! networks. Dashed lines are guide
to the eye. Dotted lines correspond tor th values obtained from
analytical calculations in a continuum model@19,27,28#.
6-4
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COORDINATION SEQUENCES AND INFORMATION . . . PHYSICAL REVIEW E66, 046126 ~2002!
Refs. @19,28#, when r takes integer values. Note, howeve
that the small-world networks employed in those works w
generated in a way different from those used here. Th
authors, instead of rewiring each bond with probabilityp,
added shortcuts between pairs of sites chosen uniforml
random, without removing any bonds from the starting l
tice. This procedure results to be more convenient for a
lytical calculations, but does not keep constant the mean
ordination, which in this case increases withp. For 1D small-
world networks withz54, such analytical procedure give
in the limit N→`,

A~r !54 exp~16pr !, ~9!

from where one has in our notationr th5exp(16p). This re-
sult is displayed by a dotted line in Fig. 4, and agrees w
our numerical results for smallp values ~represented by
circles!. For p.0.01 the analytical result is higher than th
derived from our simulations, since the mean connectiv
corresponding to a particularp value is larger in the forme
approach.

For d 5 2 and 3, the continuum model@27# gives in the
limit of large networks,

r th5exp$@2pGd~d21!! #1/d%, ~10!

with G252p and G354p. This analytical dependence o
r th is close to the results of our simulations for smallp in 2D
and 3D networks. The agreement is, however, not so goo
for d 5 1. For d 5 2 it seems that both results cross atp
'531023, suggesting that the continuum approach givep
values slightly lower than the actual discrete networks
p→0. It is not clear from our results whether somethi
similar happens ford 5 3, in which casep values smaller
than those employed in our simulations would be necess
In any case, taking into account the differences between b
methods, the continuum model gives a good description
the asymptotic behavior of the coordination sequenceC(n)
for largen.

IV. SPREAD OF INFORMATION

We now turn to the question of information spreading
small-world networks. We will study a simple model, th
can be equally useful to analyze propagation of signal,
ease, or damage in these networks. Given a certain infor
tion starting from a single site, our discussion will be ba
cally concentrated to studying the number of sites t
receive such information in a number of stepsn. We assume
that a fractionq of the sites are inactive, i.e. that they cann
receive the information and therefore do not propagate
These sites are taken randomly in the network. We cons
the simplest case that in a time unit the information pro
gates from an active site to all its active nearest neighbors
the language of epidemiology, our active sites are ‘‘susc
tible’’ individuals, and the ‘‘transmissibility’’ of our model is
unity ~every contact between a healthy but susceptible in
vidual and an infected individual results in transmissio!.
This model is similar to that employed in Refs.@16,19# to
study site percolation in these networks. Forq50 ~all sites
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are active! the average number of active receivers in stepn,
S(n), coincides with the above studiedC(n). For a given
network and a particular distancen, this average numbe
S(n) will decrease as the fractionq of inactive sites rises.
For large enoughq, one expects that the information sprea
ing at long distances will be blocked. This is expected
happen when the fraction of active sites 12q is lower than
the percolation threshold of the considered network.

In Fig. 5 we show the average numberS(n) of active
receivers as a function of the distancen, for a particular 2D
network corresponding top50.1. In this plot, different sym-
bols indicate variousq values. For each value ofq, S(n)
depends onn exponentially, in the form

S~n!5cln, ~11!

with constantsc and l. We will call l ‘‘propagation con-
stant,’’ since it controls the long-range character of the inf
mation spreading. The value ofl decreases from the effec
tive connectivityr of the network~for q50), to zero in the
limit q→1. This exponential dependence ofS(n) appears
for sufficiently largen in all considered cases (d51,2,3, as
well as differentp values!, and in general the above con
stantsc andl depend onp, q, and the network dimensiond.
For 2D and 3D networks, the valuen0 necessary to find an
exponential law increases for decreasingp, similarly to the
case of the coordination sequencesC(n) discussed above
@see Figs. 3~b! and 3~c!#.

For l.1, the information starting from a single activ
site propagates through the network, and eventually reac
the whole system without decaying, irrespective of the s
tem sizeN. On the contrary, forl,1 the spread of informa-
tion is damped and it cannot propagate to arbitrary distan
in the network. The propagation constantl is presented in
Fig. 6, as derived from numerical simulations for~a! 1D and

FIG. 5. Average numberS(n) of active nodes reached inn
steps, as derived from numerical simulations for 2D small-wo
networks of size 5003500 and rewiring probabilityp50.1. Differ-
ent symbols correspond to several values of the fraction of inac
nodesq, as indicated by labels. Dashed lines are guides to the
6-5
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~b! 2D networks. In each case we give results for seve
values of the rewiring probabilityp. For a givenp, l de-
creases as the fraction of inactive sitesq rises, and there is a
crossing pointqc(p) from propagation of information to
damping, for whichl51. Ford53 we found results quali-
tatively similar to those obtained ford52.

For a random network one trivially has:l rd5z(12q)
@dash-dotted lines in Figs. 6~a! and 6~b!#, since the active
sites and the connections between them form a new ran
network with mean coordinationz85z(12q). Therefore,
one has in this casel51 for qc5121/z. This critical value
agrees with that derived in Ref.@29# for resilience of random
networks~with a Poisson connectivity distribution! to ran-

FIG. 6. Propagation constantl as a function of the fraction o
inactive nodesq, for different values of the rewiring probabilityp.
~a! 1D networks;~b! 2D networks. Dashed lines are guides to t
eye. Dash-dotted lines correspond to random networks with m
connectivityz54. The vertical dotted line in~b! indicates the frac-
tion qc of inactive nodes, corresponding to the percolation thresh
for active sites in a 2D square lattice (12qc).
04612
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dom breakdown of nodes. In that case,qc is the critical frac-
tion of nodes that needs to be removed from a random
work before it disintegrates.

For our small-world networks withp51, the dependence
of l on q can be approximated by

lp51'r~12q!, ~12!

r being the effective connectivity. This means that close
p51, the crossing point appears atqc'121/r for our
small-world networks. However, for smallerp the function
l(q) is no longer linear onq. This can be clearly seen in th
limit p→0, where the functionl(q) flattens close toq50
~for small fraction of inactive sites!. This is the behavior
expected for regular lattices, where one should havel51 in
a region 0,q,qc . In 2D and 3D networks withp50, the
difference 12qc coincides with the percolation threshold fo
active sites in the corresponding regular lattices. In 1D re
lar networks, this region collapses onto a single point,
cause in this caseqc50. In general, for any value of the
rewiring probabilityp, a propagation constantl.1 requires
the presence of clusters of active sites with an extent on
order of the typical length of the system. This means that
fraction of active sites has to be larger than the percola
threshold of the considered network. Then, for givenp and
dimensiond, the crossing pointqc appears for a fraction o
active nodes equal to the site percolation threshold. In
language of disease propagation,qc is the minimum concen-
tration of immune individuals necessary to avoid an e
demic. In the language of network robustness, it is the po
at which a large enough number of nodes have been del
~or damaged! from a communication network to preven
communication on large scales@10#.

For l,1 and large enough systems, the total number
active receivers is given by

Nrec5 (
n51

nmax

S~n!;
cl

12l
, ~13!

which obviously diverges forl→1. Close to the crossing
point one can expandl to first order inq2qc,

l511a~q2qc!, ~14!

with

a5
dl

dqU
qc

,0, ~15!

which is valid for anyp.0. Then, we find forq.qc ,

Nrec;
c

uau~q2qc!
. ~16!

Thus, for q→qc
1 the number of active receiversNrec di-

verges as (q2qc)
21. This agrees with the scaling law for th

mean size of percolating clusters in small-world networks.
fact, close to the site percolation threshold one finds a crit

an

ld
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exponents51 @20# ~this critical exponent appears also f
site percolation in regular lattices whend→` @30#!.

A quantitative measure of the extent of the network reg
that receives the information can be obtained by calcula
the mean distancel pr from the starting node to all the activ
receivers. This propagation lengthl pr is given by the average
value ^n& calculated with the probability distribution
S(n)/Nrec , and one finds forl,1, l pr;1/(12l). For a
given network of sizeN, the information will reach the
whole system whenl pr', ~the characteristic path length o
the network!. On the contrary, whenl pr,, the information
is confined in a limited region of the network.

We finally note that values for the site percolation thre
old that can be derived from our crossing point atl51 do
not coincide with those found in earlier works@16,19,20#. As
discussed above in connection with coordination sequen
the reason for this apparent disagreement is that the sm
world networks employed in those works were generated
way different from those used here. Therefore, site perc
tion thresholds obtained in Refs.@16,19,20# are smaller than
those derived with our procedure~for p.0), as in the
former case the mean connectivityz8 is larger than that of
the starting lattice:z85z(11p).

V. CONCLUSIONS

Coordination sequences are a suitable tool to characte
the long-range behavior of small-world networks. For lar
networks and distancesn.j ~the characteristic length of th
network!, the sequenceC(n) increases asrn, thus showing a
functional dependence similar to random networks. The
fective connectivityr ranges from unity in the limit of regu
lar lattices to the mean connectivityz of the network for
random graphs. For smallp this effective connectivity fol-
lows a dependencer511ap1/d, being d the dimension of
the underlying lattice.

A simple model of information spreading in these n
works has been studied, assuming that a fractionq of the
network nodes are inactive. For largen, the number of active
receivers inn steps scales asln, with a propagation constan
l<r that depends on the disorder~rewiring probability! and
q. The information spreading shows two different regim
depending on the value ofl. On one side, forl.1 the
information starting from a single site propagates along
cluster of interconnected active sites, that spans the w
system. On the other side, forl,1 the spreading is damped
and the information remains confined in a limited region
the network. The crossover from one regime to the ot
appears at a point where the concentration of active site
2qc coincides with the percolation threshold of the cons
ered network.

Our results support the conjecture of Ref.@20# that the
critical exponents for percolation in small-world networks
not depend on the dimension of the underlying regular
tice. In fact, from the long-range connectivity studied he
one expects that all critical properties of these networks
be in the same universality class as random graphs. Th
also in line with results for Ising@21,31# andXYmodels@32#
04612
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in small-world networks, which display order-disorder tra
sitions of mean-field type, as happens for random netwo
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APPENDIX: COORDINATION SEQUENCES FOR
RANDOM NETWORKS

In this appendix we derive the mean coordination
quenceCrd(n) for random networks. For a random netwo
with mean connectivityz, the connectivity distribution
Prd(m) is given by a Poisson distribution, as in Eq.~1!. For
n51 we have obviouslyCrd(1)5z.

Given a generic node and a link starting on it, we c
Qrd(m) the connectivity distribution for the other end of th
link. The probability of reaching a node with connectivitym
is proportional tom. Hence

Qrd~m!5
1

z
mPrd~m!, ~A1!

wherez in the denominator is a normalization factor. The
the average number of next-nearest neighbors is given b

Crd~2!5z(
m.1

~m21!Qrd~m!. ~A2!

By inserting the Poisson distribution forPrd(m) in Eqs.~A1!
and ~A2! one findsCrd(2)5z2. Using the same procedur
for n.2,

Crd~n!5Crd~n21! (
m.1

~m21!Qrd~m!5zCrd~n21!,

~A3!

and consequently

Crd~n!5zn. ~A4!

Note that this is valid in the limit of large networks, as w
assume that nodes in different coordination shells are dif
ent, and each node in shelln is connected to the starting nod
by a singlen-steps path. This means that for a givenn, the
probability of finding loops withn8<n members is negli-
gible for our purposes.
6-7
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