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Coordination sequences and information spreading in small-world networks
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We study the spread of information in small-world networks generated from diffdrdimiensional regular
lattices, withd=1, 2, and 3. With this purpose, we analyze by numerical simulations the behavior of the
coordination sequence, e.g., the average number of Gite} that can be reached from a given node of the
network inn steps along its bonds. For sufficiently large networks, we find an asymptotic bel@ndr
~p", with a constanp that depends on the network dimensid@and on the rewiring probabilitp (which
measures the disorder strength of a given netvdrlsimple model of information spreading in these networks
is studied, assuming that only a fractiqrof the network sites are active. The number of active nodes reached
in n steps has an asymptotic fomf, \ being a constant that dependsmandg, as well as on the dimension
d of the underlying lattice. The information spreading presents two different regimes depending on the value of
\: ForA>1 the information propagates along the whole system, ans<at the spreading is damped and the
information remains confined in a limited region of the network. We discuss the connection of these results
with site percolation in small-world networks.
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[. INTRODUCTION works, as compared with regular lattices. Among these prob-
lems, one finds in the literature signal propagafih spread
It is well known that the structure of communication and of infections[15,16], and random spreading of information
transportation systems plays a crucial role in the spread dfL7,18. Site and bond percolatidi6,19,2Q, as well as the
information. Also, the structure of social networks is impor- ferromagnetic Ising mod¢R1,22], have been also studied in
tant for the dynamics of disease propagation. In last yeargshese networks.
several models of these complex networks have been intro- Up to now, most of the published work on small worlds
duced motivated by empirical data in different fie[ds-3].  has concentrated on networks obtained from one-
In particular, networks showing the “small-world” effect dimensional latticegrings). Small-world networks built by
have attracted a great deal of attention. In these networks, threwiring lattices of higher dimensions have being employed
“distance” between any two elements is small as comparedy Newman and Wattgl19] to study percolation, as a model
with the system size, and the propagation of informatimn  of disease propagation. Also, damage spreading has been
signal, disease, damage . ) takes place much faster than in studied for Ising models on small-world networks obtained
regular lattice§4—8]. from two-dimensional2D) and three-dimension&BD) lat-
Small-world networks are well suited to study propertiestices[23].
of physical systems with underlying networks ranging from In this paper we investigate the spread of information in
regular lattices to random grapf10], by changing a single small-world networks built up from differerd-dimensional
parameter[11]. Watts and StrogatZ4] have proposed a regular lattices(with d=1, 2, and 3, which allows us to
model for social networks, which is based on a locally highlyanalyze the influence of the dimensionality on the long-
connected regular lattice, in which a fractiprof the links  distance characteristics of these networks. With this goal, we
between nearest-neighbor sites are randomly replaced kytudy by numerical simulations the asymptotic behavior of
new random links, thus creating long-range “shortcuts.”  the so-called “coordination sequence,” a concept usually
In these networks, one has at the same time a local neiglemployed to characterize the connectivity of crystal lattices
borhood(as for regular latticgsand some global properties [24-26. It gives information about the number of sitgén)
of random graphs. The small-world effect is usually mea-that can be reached from a given site in a number of steps
sured by the scaling behavior of the characteristic path lengttin one step one goes from a site to a nearest neighBor
¢, defined as the average of the distance between any twsimilar quantity has been studied earlier in small-world net-
sites. For a random network one has a logarithmic increas&orks by means of analytical calculations in a continuum
of ¢ with the network sizeN (number of sites while for a  model[19,27,2§, as it is relevant for the analysis of spread-
d-dimensional regular lattice one finds an algebraic depening processes in these networks. From our numerical simu-
dence:¢~N¥_ In small-world networks, there is a cross- lations, we find for large networks the asymptotic behavior
over sizeN* ~p~1! that separates the large- and small-worldC(n)~ p", with a constanp>1 that depends on the rewir-
regimes[12—14, and the small-world behavior appears for ing probabilityp and on the network dimensiah Then, we
any finite value ofp (0<p<1) as soon as the network is study a simple model of information spreading, assuming
large enough. that only a fraction of the network sites are active sites
This shorter global length scale changes strongly the befwhich receive and propagate the informajiohhe number
havior of statistical physical problems on small-world net-of active sites reached in steps has an asymptotic form
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~\", being\ a constant that depends prand on the frac- 1 T e T T T
tion of active sites. We discuss the connection of our results AN D
with site percolation in these networks.
The paper is organized as follows. In Sec. Il we describe &
the procedure employed to generate the networks studied A
here, as well as some of their characteristics. In Sec. Ill we 102}
present results for the coordination sequences, and in Sec. IV
we analyze the spread of information in small-world net-
works. The paper closes with some conclusions in Sec. V. w03t

P(m)

Il. SMALL-WORLD MODEL
10k \ 3

o~

The networks studied here were generated from regular
lattices of different dimensions: 1D ring with coordination
number four, 2D square, and 3D cubic lattices. Small-world 10°
networks were built up according to the model of Watts and
Strogatz[4,11]. We consider in turn each of the bonds in the m
ifvrvtlggnlgftﬁisa;i;izl?ﬁ:t Iér\:\gtgn% %;/'[ehr:a%rgr?gti)smzﬁ;%ed to FIG. 1. Probability distribution of the connectivityl for s_mall-_
a new node chosen at random from the whole network. On orld networks. Symbols are the resul'.[s of numerlcal S|mullat|0ns
. . or networks generated from a 2D lattice of size 3@DO: dia-
imposes the conditions that no two nodes can have more than - s B e o

onds,p=0.001; trianglesp=0.01; circles,p=0.1; squaresp

one bond connecting them, and no node can be connected Eyl. Dashed lines are guides to the eye, obtained fR(m)

a "T‘k tO_ itsef. Th'.s method keeps constant the total numbe(/alues derived by using E¢4). A dotted line shows the probability
of links in the rewired networks. Thus the average coordinaysyipytion P.q(m) for a random network with mean connectivity

tion numberz in the 1D and 2D cases amounts to 4, and in,_ 4 [Eq. (1)].

our 3D networksz=6. The total number of rewired links is

3zpN on average. In the rewiring process we avoided isoprobability p, the average number of changes per sitezip.
lated sites(with zero linkg, and thus each site has at least Thjs means that each connection of a site is removed in the
one neighbor. With this procedure we obtained networks iewiring process with probability=p/2. Hence, the prob-

which more than 99.9% of the sites were connected in @pijlity distribution of the originalnot rewired links starting
single component(A random graph has usually different from a site is given by

components of various size¢dNote that there is a technical
difference between our procedure and that of Watts and Stro-
gatz[4], in which each site has at leag® neighbors in the
rewired network.

The size of the networks used in our calculations wador r=0, ... z. On the other side, the distribution of the
larger than the crossover sik& [14,19, so that we were in  number of links generated in the rewiring process is, in the
the small-world regime. Our largest networks includedlimit of large N
3x10° sites for d=1, 500<500 sites ford=2, and
80x80x 80 for d=3. Periodic boundary conditions were P,(s)= i(tz)se‘“, 3)
assumed. s!

For regular lattices all nodes have the same connectivity,

i.e. the same number of nearest neighbors_ Howeverpfor for s=0. Finally, the probability distribution for the connec-
>0 different connectivities are possible, giving rise to ativities in small-world networks is given by
probability distribution that we will calP(m). For a(large

4
P.(r)=|

)(1—t)rt“, ()

. . . "max —tz
random network with average coordination numbeP(m) _ (Z) L NFeZ—T ponm—t
is given by a Poisson distributidr2,9] Pan(m)—zo r (1=t (t2) (m—=r)!"’ @
z"e™? for m=0 andr,,,=min(zm). This expression is similar to

Prg(m)= m (@) that derived by Barrat and Wei@21] for the networks gen-

erated by these authoi@he main difference is that they left

For the small-world networks studied here, one can finduntouchedz/2 links per site, as in Ref4].) The probability
an analytic expression for the probability distribution of con-distribution P,,(m) for z=4 is represented in Fig. 1 by
nectivities,P,,(m). To do this, we will distinguish between dashed lines joining points corresponding to differemt
the ends of links that remain on their original sifes in the  Each line corresponds to a particular value of the rewiring
regular latticg, and those changed in the rewiring process.probability p. Symbols indicate results of numerical simula-
The number of links in a network with mean coordination tions for small-world networks generated from a 2D square
amounts to;zN. Since for each link connecting two sites in lattice: diamondsp=0.001; trianglesp=0.01; circles,p
the starting regular lattice, we change one of these sites witk0.1; squaresp=1. Note that the simulated networks do
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not include isolated sites, i.e?,(0)=0. This fact, however,
does not affect a good agreement between simulated and
analytical results, sincB,,(0) derived from Eq(4) is small,

and even fop=1 we haveP,,(0)<0.01.

As expected, the distributioR(m) becomes broader gs
increases. Fop=1, our resultgsquaresapproach the con-
nectivity distribution of a random network with=4 (dotted
line), which is given by Eq.(1). Nevertheless, it turns out
that both probability distributions are clearly different. This
is due to the fact that our networks wipl= 1 are not random
networks, as they keep memory of the starting regular lat-
tices. The main reason for this memory effect is that we
rewire only one end of each link, maintaining the other end
on its original site.

C(n)

ll. COORDINATION SEQUENCES 50

Distance n

Coordination sequencé&3(n) count the number of nodes
that can be reached from a given point of the network by a FIG. 2. Average coordination sequen€¢n) for 2D networks
numbern of steps along its bond€(n) is thus the number of different sizesL XL and p=0.01. Different symbols represent
of nodes in the “coordination shellh. This concept gener- several values ok: squaresL =50; circles,L=100; trianglesL
alizes the familiar coordination numbéalso called connec- =200; diamondsl. =500. The dashed line is an extrapolation for
tivity, or vertex degree in graph thegrywhich is the first largeL. Dotted lines are guides to the eye.
member of this seriemn(=1). For regular lattices, the coor-
dination sequenc€(n) is a polynomial. For the lattices con- networks under consideration. By increasmgne observes
sidered here one ha<;p(n)=4, C,p(n)=4n, and in the 2D and 3D cases a crossover from the regular-lattice
Csp(n)=4n%+2. In general, ford-dimensional lattices, behavior(power-law dependence, smal to an exponential
C(n) is a polynomial of degred—1. On the other side, for dependencelargen). This crossover takes place at a dis-
a (large random network with mean coordinatianthe av-  tanceno, which increases for decreasipgand is found to
erage coordination sequence is givendy(n)=z" (see the scale asny~p ', as expected from earlier calculations
Appendix. Note that for random and small-world networks [19]. In 1D we do not observe such a crossover, since for the
the coordination sequence depends on the considered startifggular lattice one ha€(n)=4 (a constant and the expo-
node of the network. In the sequel we will cali(n) the nential dependence appears already for smakiues, even
average coordination sequence, i.e., the mean value obtain& p=0.001[squares in Fig. @].
(for eachn) by averaging the coordination sequences of all The mean distance between pairs of sife a given
network sites. network (the characteristic path lengtfs given in our con-

In Fig. 2 we give the average coordination sequenceéext by the average valy@), calculated with the normalized
C(n) for 2D small-world networks of different sizésx L, probability distributionC(n)/N. As indicated above, this av-
with L from 50 to 500, and for rewiring probabilityp erage distancé is known to increase logarithmically with
=0.01.C(n) increases with the distanoeup to a maximum the system size. This dependence afppears naturally from
value Cp,,,, Which depends on the system size, and therthe asymptotic dependence 6{n), as for C(n)~p" one
decreases for larger. For eachL one observes a region in has
which logC(n)~n, before reaching saturation @t,,,. Such
a region becomes larger as rises, and leads to an logN

. no {~—-. (5)

asymptotic dependence of the for@(n)~p" with a con- logp
stantp>1 (dashed line in Fig. 2 This exponential depen-
dence om contrasts with the power law corresponding to theHere one can see again the rolepofis an effective connec-
starting regular lattice. tivity for small-world networks, since for random networks

A similar behavior is found foC(n) in 1D and 3D net- with mean connectivity one hast ~logN/logz [2]. For p
works, and for different values @ This is shown in Fig. 3 =1 we obtainp values close tgbut lower than the mean
for small-world networks built up from lattices of different connectivityz, as expected from the fact that in this case we
dimensionsi(a) d=1, (b) d=2, and(c) d=3. In all cases have networks that are not totally randdifior which one
one finds for sufficiently large the dependenc€(n)~p", should havep=2z).
which is similar to the expression corresponding to a random For a given dimensiou, the effective connectivity de-
network with mean connectivity (instead of the actual creases ap is lowered. In the limitp—0 one hap—1, as
mean connectivity). Hence, we will callp “effective con-  expected when one approaches a regular lattice. In Fig. 4 we
nectivity” of the considered network, which will depend on present the effective connectivigy as a function ofp in a
the dimensiord and on the rewiring probabilitp. This ef-  double logarithmic plot. One observes that 1 follows for
fective connectivity controls the long-range properties of thesmallp a power law of the formp—1=a p®, with constants
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FIG. 3. Average coordination sequencCén) for networks of
different dimensiord, and for several values of the rewiring pro

ability p. (8 1D networks with 10 sites; from top to bottomp
=1, 0.1, 0.05, 0.02, 0.01, 0.005, 0.001, andl).2D networks of

size 500 500, withp=1, 0.1, 0.01, 0.004, 0.002, 0.001, and®).
3D networks of size 88 80X 80, with p=1, 0.05, 0.005, 0.001,

Distance

n

and 0. Dashed lines are guides to the eye.
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FIG. 4. Effective connectivity for small-world networks gen-
erated from differend-dimensional lattices. We presgmt-1 vs the
rewiring probabilityp in a double-logarithmic plot for 1Dsquarek
2D (circles, and 3D(triangles networks. Dashed lines are guides
to the eye. Dotted lines correspond pg, values obtained from

analytical calculations in a continuum modéb,27,2§.
a andb dependent on the network dimension. By numerical
fitting, we find for the exponerti the values 0.92), 0.492),

and 0.362), in 1D, 2D, and 3D, respectively.
To understand this dependence pof the effective con-

nectivity, we will consider the length scale characteristic of
small-world networks, given by the typical distance between

ends of shortcutfl9]:
§=(pz

First, we note that for regular lattices, one h&fn
+1)/C(n)—1 for largen. Second, in the presence of a low

concentration of shortcuts one expel9,27]

C(n+1)~C(n)[1+B/¢],

- 1/d_ (6)

)

B being a constant dependent on the network topology.
Therefore, for smalp we find forp a dependence in the form
p=1+ap', ®)

in good agreement with the results of our numerical simula-
tions. In particular, we find for the expondntiefined above:
b=1/d. Our numerical result for 3D networks is slightly
higher than 1d=0.33, which seems to indicate that still
smallerp values(larger network sizesare necessary to im-
prove the agreement with this prediction.
In Fig. 4 we compare these numerical results for the ef-
fective connectivityp with those obtained from analytic cal-
p- Culations in a continuum modedHdotted lineg [19,27,2§.
These calculations allowed to obtain analytic expressions for
the “volume” V(r), which gives the average number of
neighbors of a given node in a neighborhood of “radius”
In particular, ourC(n) should coincide wittA(r) (the “sur-
face areal, defined as the derivativA(r)=dV(r)/dr in

046126-4



COORDINATION SEQUENCES AND INFORMATION . .. PHYSICAL REVIEW 66, 046126 (2002

Refs.[19,28, whenr takes integer values. Note, however,
that the small-world networks employed in those works were
generated in a way different from those used here. These
authors, instead of rewiring each bond with probability
added shortcuts between pairs of sites chosen uniformly at
random, without removing any bonds from the starting lat-
tice. This procedure results to be more convenient for ana-
lytical calculations, but does not keep constant the mean co-
ordination, which in this case increases with~or 1D small-
world networks withz=4, such analytical procedure gives
in the limit N— oo,

S(n)

A(r)=4 expg16pr), 9

from where one has in our notatigr,=exp(16). This re-
sult is displayed by a dotted line in Fig. 4, and agrees with
our numerical results for smalp values (represented by )
circles. For p>0.01 the analytical result is higher than that Distance n

derived from our simulations, since the mean connectivity g 5 Average numbeS(n) of active nodes reached in

corresponding to a particulgrvalue is larger in the former sieps, as derived from numerical simulations for 2D small-world

approach. _ _ ' networks of size 508 500 and rewiring probabilitp=0.1. Differ-
' FOF d = 2 and 3, the continuum modg27] gives in the  ent symbols correspond to several values of the fraction of inactive
limit of large networks, nodesq, as indicated by labels. Dashed lines are guides to the eye.
_ wd
ptn=exp{[2pl'q(d—1)! 7}, (100 are active the average number of active receivers in siep

S(n), coincides with the above studiggi(n). For a given

network and a particular distanag this average number

S(n) will decrease as the fractiog of inactive sites rises.
or large enougly, one expects that the information spread-

with I'y=27 and I'3=4. This analytical dependence of
pin IS close to the results of our simulations for sngeih 2D
and 3D networks. The agreement is, however, not so good

ffgilzo_ls' Ford :t'z |ttze(ta$]s thatt_both results crcr:]ss_pat ing at long distances will be blocked. This is expected to
- , suggesting that the continuum approach gpes happen when the fraction of active sites ¢ is lower than

values sll_ghtly lower than the actual discrete networks.for,[he percolation threshold of the considered network.
p—0. It is not clear from our results whether something

similar happens fod = 3, in which case values smaller In Fig. 5 we show the average numb8fn) of active
PP ' ® receivers as a function of the distantefor a particular 2D

than those emp!oye_d in-our 5|mu|at|o_ns would be necessa letwork corresponding tp=0.1. In this plot, different sym-
In any case, taking into account the differences between bo S )
ols indicate variougy values. For each value af, S(n)

methods, the continuum model gives a good description %ficpends om exponentially. in the form
the asymptotic behavior of the coordination seque@¢r) P P Y.

for largen. S(n)=cA", (11)
V. SPREAD OF INFORMATION with constantsc and A. We will call A “propagation con-

We now turn to the question of information spreading instant,” since it controls the long-range character of the infor-
small-world networks. We will study a simple model, that mation spreading. The value af decreases from the effec-
can be equally useful to analyze propagation of signal, distive connectivityp of the network(for q=0), to zero in the
ease, or damage in these networks. Given a certain informdimit g— 1. This exponential dependence $fn) appears
tion starting from a single site, our discussion will be basi-for sufficiently largen in all considered casesi€ 1,2,3, as
cally concentrated to studying the number of sites thawell as differentp valueg, and in general the above con-
receive such information in a number of stepdVe assume stantsc and\ depend orp, g, and the network dimensiath
that a fractionq of the sites are inactive, i.e. that they cannotFor 2D and 3D networks, the valug necessary to find an
receive the information and therefore do not propagate itexponential law increases for decreasmgsimilarly to the
These sites are taken randomly in the network. We considezase of the coordination sequendgén) discussed above
the simplest case that in a time unit the information propafsee Figs. &) and 3¢)].
gates from an active site to all its active nearest neighbors. In For A>1, the information starting from a single active
the language of epidemiology, our active sites are “suscepsite propagates through the network, and eventually reaches
tible” individuals, and the “transmissibility” of our model is the whole system without decaying, irrespective of the sys-
unity (every contact between a healthy but susceptible inditem sizeN. On the contrary, foh <1 the spread of informa-
vidual and an infected individual results in transmisgion tion is damped and it cannot propagate to arbitrary distances
This model is similar to that employed in Refd6,19 to  in the network. The propagation constantis presented in
study site percolation in these networks. et 0 (all sites  Fig. 6, as derived from numerical simulations faf 1D and
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4 T T T T dom breakdown of nodes. In that cagg,is the critical frac-
[\, tion of nodes that needs to be removed from a random net-
\\\\ (a) 1D work before it disintegrates.
< \\'\.\ For our small-world networks witp=1, the dependence
= 3 ‘k'\‘«\ ] of A on g can be approximated by
g | et
Z NS Np—1~p(1—0), (12)
o AR
= 2 P 0.1 \c‘;\ T p being the effective connectivity. This means that close to
g N \Qi\ p=1, the crossing point appears gt~1—1/p for our
§0 0.01\°\ W small-world networks. However, for small@rthe function
= ::31%3 ________ o W, )_\(q) is no longer linear omj. _This can be clearly seen in the
& oooI :&% \\\ mﬁ\’ limit p—0, where the functior\(q) flattens close t@=0
) 2o Ny (for small fraction of inactive sitgs This is the behavior
N expected for regular lattices, where one should hexel in
0 L L L L a region 6<q<(c. In 2D and 3D networks witlp=0, the
0 02 04 06 08 1 difference 1-q. coincides with the percolation threshold for
q active sites in the corresponding regular lattices. In 1D regu-
lar networks, this region collapses onto a single point, be-
4 cause in this casg.=0. In general, for any value of the
‘]:\ ' ' ' rewiring probabilityp, a propagation constant>1 requires
N the presence of clusters of active sites with an extent on the
- \\\.\ (b) 2D order of the typical length of the system. This means that the
3l AN t‘\\.\ | fraction of active sites has to be larger than the percolation
‘g p=1 \\'\.\ threshold of the considered network. Then, for giyeand
2 NN dimensiond, the crossing point|; appears for a fraction of
s L o1 \\t \, active nodes equal to the site percolation threshold. In the
: 2t \\'\ \‘\\\ . language of disease propagatigg,is the minimum concen-
k) Y \'\\\ tration of immune individuals necessary to avoid an epi-
§n | __001 \c\ ‘ci\\.\ demic. In the language of network robustness, it is the point
g »__::i::;: - \°\\ ‘\‘Q_ at which a large enough number of nodes have been deleted
o 1 6001 SNy Y (or damaged from a communication network to prevent
A~ ' o e N communication on large scalg$0].
s For A<1 and large enough systems, the total number of
0 . . . active receivers is given by
0 02 04 06 08 1 n
max C)\
q Nrec= 2, S(M~7—y, (13)

FIG. 6. Propagation constantas a function of the fraction of
inactive nodesy, for different values of the rewiring probability. ~ Which obviously diverges foh—1. Close to the crossing
(@) 1D networks;(b) 2D networks. Dashed lines are guides to the point one can expani to first order inq—qc,
eye. Dash-dotted lines correspond to random networks with mean
connectivityz=4. The vertical dotted line ifb) indicates the frac-
tion g, of inactive nodes, corresponding to the percolation threshold
for active sites in a 2D square lattice £1y.). with

AN=1+a(q—q), (14)

(b) 2D networks. In each case we give results for several d\
values of the rewiring probabilityp. For a givenp, N\ de- a= d_q
creases as the fraction of inactive sitegses, and there is a e
crossing pointg.(p) from propagation of information to
damping, for whichh=1. Ford=3 we found results quali-
tatively similar to those obtained fat=2.

For a random network one trivially ha&;4=2z(1-q) N.. ~ ¢
[dash-dotted lines in Figs.(® and @b)], since the active "¢ lal(g—qe)
sites and the connections between them form a new random
network with mean coordinatioz’ =z(1—q). Therefore, Thus, forq—q. the number of active receiveid,. di-
one has in this case=1 for q.=1—1/z. This critical value  verges asq—q.) 1. This agrees with the scaling law for the
agrees with that derived in R4R9] for resilience of random mean size of percolating clusters in small-world networks. In
networks (with a Poisson connectivity distributiprio ran-  fact, close to the site percolation threshold one finds a critical

<0, (15)

which is valid for anyp>0. Then, we find fog>q.,

(16)
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exponento=1 [20] (this critical exponent appears also for in small-world networks, which display order-disorder tran-

site percolation in regular lattices wher-« [30]). sitions of mean-field type, as happens for random networks.
A quantitative measure of the extent of the network region

that receives the information can be obtained by calculating

the mean distanck,, from the starting node to all the active ACKNOWLEDGMENTS

receivers. This propagation lendif} is given by the average  the aythor benefited from useful discussions with M. A.
value (n) calculated with the probability distribution g e cara and M. Saboya. Thanks are due to E. Ghmo
S(n)/Nyec, and one finds fon<1, I, ~1/(1=\). For a gyitically reading the manuscript. This work was supported

given network of sizeN, the information will reach the by CICYT (Spain under Contract No. BFM2000-1318.
whole system whety, ~ ¢ (the characteristic path length of

the networl. On the contrary, wheh, < the information

is confiped in a limited region of the n_etwork. _ APPENDIX: COORDINATION SEQUENCES FOR
We finally note that values for the site perc_olatlon thresh- RANDOM NETWORKS
old that can be derived from our crossing pointi\at1 do _ . . o
not coincide with those found in earlier works5,19,2Q. As In this appendix we derive the mean coordination se-

discussed above in connection with coordination sequenceguenceC,q(n) for random networks. For a random network
the reason for this apparent disagreement is that the smalvith mean connectivityz, the connectivity distribution
world networks employed in those works were generated in &,4(m) is given by a Poisson distribution, as in Ed). For
way different from those used here. Therefore, site percolan=1 we have obviouslC,4(1)=z.

tion thresholds obtained in Refgl6,19,2Q are smaller than Given a generic node and a link starting on it, we call
those derived with our procedurdor p>0), as in the Q.q(m) the connectivity distribution for the other end of the
former case the mean connectivity is larger than that of link. The probability of reaching a node with connectivity
the starting latticez’ =z(1+ p). is proportional tom. Hence

1
V. CONCLUSIONS Qra(m)=—mPrg(m), (A1)

Coordination sequences are a suitable tool to characterize
the long-range behavior of small-world networks. For large
networks and distances> ¢ (the characteristic length of the wherez in the denominator is a normalization factor. Then,
network), the sequenc€(n) increases ag", thus showing a the average number of next-nearest neighbors is given by
functional dependence similar to random networks. The ef-
fective connectivityp ranges from unity in the limit of regu-
lar lattices to the mean connectivity of the network for
random graphs. For smafl this effective connectivity fol- Crd(2)=zmz>l (M=1)Qrqg(m). (A2)
lows a dependence=1+apd, beingd the dimension of
the underlying lattice.

A simple model of information spreading in these net-gy inserting the Poisson distribution fé%4(m) in Egs.(A1)

works has been studied, assuming that a fractjoof the 54 (A2) one findsC,4(2)=22. Using the same procedure
network nodes are inactive. For largethe number of active  for n>2,

receivers im steps scales as', with a propagation constant
A <p that depends on the disordgewiring probability and
g. The information spreading shows two different regimes
depending on the value of. On one side, fonx>1 the Cra(M)=Crg(n—1) X, (M=1)Q,q(m)=2C,¢(n—1),
information starting from a single site propagates along a m-t (A3)
cluster of interconnected active sites, that spans the whole
system. On the other side, farK1 the spreading is damped,
and the information remains confined in a limited region ofand consequently
the network. The crossover from one regime to the other
appears at a point where the concentration of active sites 1
—(. coincides with the percolation threshold of the consid- Cig(n)=2". (A4)
ered network.

Our results support the conjecture of REZ0] that the
critical exponents for percolation in small-world networks do  Note that this is valid in the limit of large networks, as we
not depend on the dimension of the underlying regular latassume that nodes in different coordination shells are differ-
tice. In fact, from the long-range connectivity studied hereent, and each node in shells connected to the starting node
one expects that all critical properties of these networks wilby a singlen-steps path. This means that for a giventhe
be in the same universality class as random graphs. This jgrobability of finding loops withn’<n members is negli-
also in line with results for Ising21,31 andXY models[32]  gible for our purposes.
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